United States Patent [

0 0O O

US005329598A
(11] Patent Number: 5,329,598

Geist [45] Date of Patent: Jul. 12, 1994
{54] METHOD AND APPARATUS FOR 4,979,227 12/1990 Mittelbach et al. 382/57
ANALYZING CHARACTER STRINGS Primary Examiner—Leo H. Boudreau
[75] Inventor: Jon C. Geist, Olney, Md. Attorney, Agent, or Firm—Stephen J. Roe
[73] Assignee: The United States of America as [57] ABSTRACT
g:;;i’:ieed {)\ya:ﬁ?nsigzetgycﬁ A method for automatically identifying and correcting
i gton, L.L. errors in electronically stored character strings input
{211 Appl. No.: 911,698 from handwritten character strings is disclosed. The
[22] Filed: Jul. 10, 1992 input cparacter strings are compared to a predeter-
s pnned list of correct character strings by dividing the
[51] Int. CLS e, GO6K 9/00 input character string and each of the correct character
[52] US.CL .o 382/39; 33852//450; strings into at least one character string fragment. Each
7 character string fragment or set of character string
[58] Field of Searchcccuvnnn... 382/39, 57, 40 fragments is formed by applying at least one different
[56] References Cited fragmentation submethod to the character string. The
U.S. PATENT DOCUMENTS co;respogdi;llg fragmen;ls from the input ;haracter
string and the correct character strings are then com-
4,355,371 10/1982 Convis et al. ..ccccovvurvrrerunens 364/900 pared in turn. The correct character string producing a
:‘5‘;(1);3? 3; }32‘; %}‘i’ﬂrzson et al. gz; ggg unique lowest comparison value is determined to be the
4654875 3 /1987 Srihari e "3 82/40 correct character string intended by the input character
4730269 3/1988 KUCETA ... 364/900 SITINE. Accordingly, the determined correct character
4,783,758 11/1988 KUCETA w.oovverrorosorr 364/900 ~ String is output in place of the input character string.
4,799,271 1/1989 Nagasawa et al.
4,903,206 2/1990 Itoh et al. wvvvrverecreeeiverrnnns 364/419 21 Claims, 20 Drawing Sheets
WETHOD FOR CORRECTING AND JUNP TO DINGRAPH
IDENTIFYING UNCORRECTED SUBMETHOD

CHARACTER STRINGS

t
STORE IN MEMORY AS FRAGMENTS
THE PREDETERMINED LIST OF
CORRECT CHARACTER STRINGS

t
CONVERT HANDWRITTEN DATA TO
UNCORRECTED CHARACTER
STRINGS USING OCR
]
STORE UNCORRECTED CHARACTER
STRING TO MEMORY

JUNP TO ALPHA
SUBMETHOD
i

JUMP TO COMPARE
SUBROUTINE

1S
SUBMETHOD
BEING USED 10
PRESELECT CORRECT
CHARACTER
STRINGS
?

USE

DIGRAPH

SUBWETHOD
2

NO

[
JUMP TO COMPARE
SUBROUTINE

s
SUBMETHOD
BEING USED T0
PRESELECT CORRECT
CHARACTER
STRLNGS

\ES

| JUNP TO SCWY
SUBMETHOD
1

| JUMP TO COMPARE]
SUBROUTINE

1S
LOWEST
TOTAL ERROR
VALUE OF THE CORRECT
CHARACTER STRINGS
UNDSUE

1S
UNIQUE
LOWEST TOTAL
ERROR VALUE
BELOW PREDETERMINED

ERROR THRESHOLD
?

OUTPUT UNIQUE, LOWEST
CORRECT CHARACTER STRING
T0 INPUT FORM DATA FILE

QUTPUT DATA IN STACK WEMORY
T0 DATA FILE FOR HUMAN f—
INTERVENTION

JUMP TO CONVERSION OF

HANDWRITTEN DATA STEP

U.S. Patent

July 12, 1994 Sheet 1 of 20 5,329,598
HANDWRITING SAMPLE FORM
NAME DATE eIy SAE 7P
713/89 Cheboygan, Mi 4972/

This sample of handwriting is being collected for use in testing
computer recognition of hand printed numbers and letters. Please print
the following characters in the boxes that appear - below.

0123456789 0123456789 0123456789
0123456789 0123456789 0123450789
00 101 2753 42440 069665

00 10/ 2753 42440 06965

732 2344 91407 957562 31
732 2344 91407 757562 31
4409 96183 373988 96 888
4409 76183 37393¢% 76 838
47762 198788 72 239 3355
47762 175788 72 239 3555
079565 06 150 4112 82615
019565 06| |/50 4112 2615
|fyocqkz jmbxgduverwisnhatp
Ifyocgkzjmbagduverwisnhatp

KPCAND JRNWYHFQL IBSUOEKVTZG
KPCANDIRMWYHFQLIBSUOEKVTZG

Please print the following text in the box below:
We, the People of the United States, in order to form a more perfect
Union, establish justice, insure domestic Tranquility, provide for the
commen defense, promote the general Welfare, and secure the Blessings

of Liberty to ourselves and our posterity, do ordain and establish this
Constitution for the United States of America.

We, tho Feople of the United Stales, in order fo form a more
perfect Union, estabiish juslice, insure domestic Tronguiiity,
provide for the commen defense, promote the general Welfare,
and secvre the Blessings Of liberly fo ourcelves and our
poster i*y, do crdam and establich ¢this Constitutipn for

the Unjted Stales of America..

FIG.1

U.S. Patent

METHOD FOR CORRECTING AND

July 12, 1994

Sheet 2 of 20 5,329,598

IDENTIFYING UNCORRECTED
CHARACTER STRINGS

1
STORE IN MEMORY AS FRAGMENTS
THE PREDETERMINED LIST OF
CORRECT CHARACTER STRINGS

|
CONVERT HANDWRITTEN DATA TO
UNCORRECTED CHARACTER
STRINGS USING OCR

!

STORE UNCORRECTED CHARACTER
STRING TO MEMORY

USE
ALPHA
SUBMETHOD
?

YES

JUMP TO ALPHA
SUBMETHOD

!

JUMP TO COMPARE
SUBROUTINE

IS

SUBMETHOD

BEING USED TO

PRESELECT CORRECT

CHARACTER

STRINGS
2

USE

JUMP TO DIAGRAPH
SUBMETHOD

1

JUMP TO COMPARE
SUBROUTINE

S
SUBMETHOD -
BEING USED 70 NO
PRESELECT CORRECT
CHARACTER
STRINGS

YES

JUMP TO SCmv
SUBMETHOD

!

JUMP TO COMPARE
SUBROUTINE

DIGRAPH
SUBMETHOD
?

NO

FIG.2A

IS

LOWEST

TOTAL ERROR

VALUE OF THE CORRECT

CHARACTER STRINGS

UNIQUE
?

YES

IS
UNIQUE
LOWEST TOTAL
ERROR VALUE

BELOW PREDETERMINED
ERROR THRESHOLD
?

YES

OUTPUT UNIQUE, LOWEST
CORRECT CHARACTER STRING
TO INPUT FORM DATA FILE

QUTPUT DATA IN STACK MEMORY
T0 DATA FILE FOR HUMAN
INTERVENTION

-

JUMP TO CONVERSION OF
HANDWRITTEN DATA STEP

U.S. Patent July 12, 1994 Sheet 3 of 20 5,329,598

COMPARE
SUBROUTINE

POINT TO FIRST CHARACTER
STRING AS CURRENT CHARACTER STRING

COMPARE CURRENT STRING FRAGMENT
SETS TO UNCORRECTED CHARACTER
STRING FRAGMENT SETS

USE
BOTH DETERMINE “MISSED" AND
COMPARISONS “MATCHED" ERROR VALUES]
l)

USE
“XOR™
COMP@RISON

NO

YES
DETERMINE *‘MISSED’ DETERMINE “MATCHED"
ERROR VALUES ERROR VALUES

SELECT LOWEST ERROR
VALUE AS TOTAL VALUE

STORE COMPARISON DATA
AND CORRECT CHARACTER STRING
T0 A STACK MEMORY

HAVE

ALL CORRECT

CHARACTER STRINGS

BEEN COMPARED TO UNCORRECTED

CHARACTER STRING
?

YES

NO

POINT TO NEXT CHARACTER RETURN
STRING AS CURRENT CHARACTER

— FI1G.2B

U.S. Patent

SCMV
SUBMETHOD

1
POINT TO FIRST CHARACTER
FRAGMENT SET AS CURRENT
FRAGMENT SET

POINT TO FIRST CHARACTER
FRAGMENT AS CURRENT
CHARACTER FRAGMENT

POINT TO FIRST CHARACTER
AS CURRENT CHARACTER

THE CURRENT

CHARACTER A

CONSONANT
?

NO

July 12, 1994

Sheet 4 of 20

N

THE CURRENT

CHARACTER THE

FIRST CHARACTER

OF THE STRING
?

YES

5,329,598

POINT TO THE NEXT FRAGMENT
AS THE CURRENT FRAGMENT

IS
THE CURRENT
FRAGMENT > THE

NO

INCLUDE CURRENT CHARACTER
IN THE CURRENT FRAGMENT

!

POINT TO THE NEXT CHARACTER
AS THE CURRENT CHARACTER

FOURTH FRAGMENT

DOES
CURRENT
CHARACTER
EXIST
?

HAVE

BOTH FORWARD

AND REVERSE FRAGMENT

SETS BEEN

GENERATED
?

NO

REVERSE ORDER OF THE
ORIGINAL CHARACTER STRING

l

POINT TO THE NEXT FRAGMENT
SET AS THE CURRENT FRAGMENT SET

JUMP TO SWMC
SUBMETHOD

FIG.3

U.S. Patent

SVMC
SUBMETHOD

5
POINT TO NEXT
FRAGMENT SET AS CURRENT
FRAGMENT SET

1
POINT TO FIRST CHARACTER
FRAGMENT AS CURRENT
CHARACTER FRAGMENT

DOES
CHARACTER STRING™_ N0

July 12, 1994

5,329,598

Sheet 5 of 20

DUPLICATE CHARACTERS

OF STRING UNTIL 7 CHARACTERS
ARE IN STRING

HAVE AT LEAST 7
CHARACTERS
?

YES

POINT TO FIRST CHARACTER
AS CURRENT CHARACTER

THE CURRENT
CHARACTER A YES

IS

THE CURRENT

CHARACTER THE NO

FIRST CHARACTER

OF THE STRING
?

YES

POINT TO THE NEXT FRAGMENT
AS THE CURRENT FRAGMENT

VOWV
?

YES

INCLUDE CURRENT CHARACTER
IN THE CURRENT FRAGMENT

1
POINT TO THE NEXT CHARACTER
AS THE CURRENT CHARACTER

IS
THE CURRENT

NO FRAGMENT > THE

FOURTH FRAGMENT
?

YES

DOES
CURRENT
CHARACTER
EXIST

HAVE

BOTH FORWARD

AND REVERSE FRAGMENT

SETS BEEN

GENERATED
9

NO

REVERSE ORDER OF THE JUMP TO MCMV
FIG.4 ORIGINAL CHARACTER STRING SUBMETHOD

U.S. Patent July 12, 1994

MCMV

POINT TO FIRST FRAGMENT
AS THE CURRENT FRAGMENT

1
POINT TO FIRST CHARACTER
AS THE CURRENT CHARACTER

Sheet 6 of 20

5,329,598

INCLUDE CHARACTER IN
CURRENT FRAGMENT

THE CURRENT

CHARACTER A

CONSONANT
?

YES

NO

POINT TO NEXT FRAGMENT
AS THE CURRENT FRAGMENT

IS
CURRENT
FRAGMENT >
FOURTH FRAGMENT

IS
THE NEXT
CHARACTER A
~ VOWEL
?

YES

POINT TO THE NEXT
CHARACTER AS THE
CURRENT CHARACTER

DOES

CURRENT
CHARACTER
EXIST

2

YES

HAVE
BOTH FORWARD
AND REVERSE FRAGMENT
SETS BEEN CREATED

NO

RETURN

REVERSE ORDER OF
ORIGINAL CHARACTER
STRING

&

POINT TO NEXT FRAGMENT

FIG.S

SET AS THE CURRENT
FRAGMENT SET

U.S. Patent July 12, 1994

Sheet 7 of 20 5,329,598

MVMC

DOES
CHARACTER
SIRING HAVE AT
LEAST 7 CHARACTERS _,

?

DUPLICATE CHARACTERS UNTIL
7 CHARACTERS ARE IN STRING

POINT TO FIRST FRAGMENT AS
THE CURRENT FRAGMENT

POINT TO FIRST CHARACTER
AS THE CURRENT CHARACTER

INCLUDE CHARACTER IN
CURRENT FRAGMENT

1
POINT TO THE NEXT
CHARACTER AS THE
CURRENT CHARACTER

THE CURRENT

CHARACTER A

CONSONANT
2

NO

POINT TO NEXT FRAGMENT
AS THE CURRENT FRAGMENT

IS
CURRENT
FRAGMENT >
FOURTH FRAGMENT
?

N

TIME CURRENT

CHARACTER A

VOWEL
?

YES

POINT TO THE NEXT
CHARACTER AS THE
CURRENT CHARACTER

DOES
CURRENT
CHARACTER
EXIST
2

HAVE
BOTH FORWARD
AND REVERSE FRAGMENT
SETS BEE[\I} CREATED

NO

YES
RETURN

REVERSE ORDER OF
ORIGINAL CHARACTER
STRING

POINT TO NEXT FRAGMENT
SET AS THE CURRENT

FRAGMENT SET

U.S. Patent

July 12, 1994 Sheet 8 of 20

ALPHA
METHOD

POINT TO FIRST FRAGMENT
AS THE CURRENT FRAGMENT

POINT TO THE FIRST CHARACTER
AS THE CURRENT CHARACTER

INCLUDE CHARACTER IN
CURRENT FRAGMENT

POINT TO THE NEXT CHARACTER
AS THE CURRENT CHARACTER

DOES
CURRENT
CHARACTER
EXIST
2

THE CURRENT
CHARACTER EQUAL
TO ANY INCLUDED
CHARACTER

RETURN

FIG.7

5,329,598

Sheet 9 of 20 5,329,598

July 12, 1994

U.S. Patent

8°9l4
31V NOLLVOLILINAA!
£0 S0 90 SS0 G0 SO ¥0 GO €0 G20
100
200
€00
900
500
90°0

A1V HOYY3

Sheet 10 of 20 5,329,598

July 12, 1994

U.S. Patent

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
01:11000000000000000000000000000000
200000000000001000000000000000000
3:00000000000001100000000000000000

4:00100000000000000000000000000000
05:00000000001000000000000000000000

6:00100000000000100000000000000000

7.00000000000001000000000000000000
8:10000000000001000000000000000000

9:01000000000000000000000000000000
10:10000000000001000000000000000000

1:00100000001000100000000000000000
2:00000000000000000000000000000000

3:00100000001000000000000000000000
4.00000000000001100000000000000000
15:11000000000000000000000000000000

6:00000000000000000000000000000000
7:11000000000000000000000000000000
8:00000000000001100000000000000000
9:00100000001000000000000000000000

20:00000000000000000000000000000000

1:00100000001000100000000000000000
2:10000000000001000000000000000000
3:01000000000000000000000000000000

4:00000000000000000000000000000000
2:01000000000000000000000000000000

6:10000000000001000000000000000000

7:00100000001000100000000000000000
8:00000000000000000000000000000000

9:00100000001000000000000000000000
30:00000000000001100000000000000000

1:11000000000000000000000000000000
200000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ&

FIG.9A

Sheet 11 of 20 5,329,598

July 12, 1994

U.S. Patent

ABCDEFGHIJKLMNOPQRSTUVWXYZ&
01.11000000000000000000000000000000
200000000000000100000000010000000

3:00100000000000000000000000000000
4.00000000001000000000000000000000
05:00000000001000000000000000000000

6:00100000000000100000000000000000

7:110000000000000000000000010000000
8:01000000000000000000000000000000

9:01000000000000000000000000000000
10:10000000000000000000000010000000

1:00100000001000100000000000000000
200000000000000000000000000000000

3:00100000001000000000000000000000

4:00000000000000100000000010000000
15:11000000000000000000000000000000

6:00000000000000000000000000000000

7:11000000000000000000000000000000
8.00000000000000100000000010000000

9:00100000001000000000000000000000
20:00000000000000000000000000000000

1:00100000001000100000000000000000

2.10000000000000000000000010000000
3:.01000000000000000000000000000000

4:00000000000000000000000000000000
25:01000000000000000000000000000000

6:10000000000000000000000010000000

7:00100000001000100000000000000000
8:00000000000000000000000000000000
9:.00100000001000000000000000000000
30:00000000000000100000000010000000

1:11000000000000000000000000000000
200000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ&

F1G.9B

Sheet 12 of 20 5,329,598

July 12, 1994

U.S. Patent

000000000

XYZ&
200000000000001100000000010000000

VW
00

00

3:00100000000001100000000000000000
4:.00100000001000000000000000000000
05:00000000000000000000000000000000

6:00000000000000000000000000000000

7:10000000000001000000000010000000

8:11000000000000000000000000000000
9:00000000000C0O0O0C0O0OOOOOOOO0O0O0000000
10.00000000000001000000000010000000

1:00000000000000000000000000000000

200000000000000000000000000000000
3:00000000000000000000000000000000
4:00000000000001000000000010000000
15:00000000000000000000000000000000

6:00000000000000000000000000000000

7.00000000000000000000000000000000
8.00000000000001000000000010000000
9:0000000000000000000000O0000000000
20:00000000000000000000000000000000

1:00000000000000000000000000000000

2200000000000001000000000010000000

3:00000000000000000000000000000000
4:.00000000000000000000000000000000
22:00000000000000000000000000000000

6:00000000000001000000000010000000

7:00000000000000000000000000000000
8:00000000000000000000000000000000
9:00000000000000000000000000000000
30:00000000000001000000000010000000

1:.00000000000000000000000000000000

200000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ&

FI1G.9C

Sheet 13 of 20 5,329,598

July 12, 1994

U.S. Patent

200000000000000000000000000000000
3:00000000000000000000000000000000

4:.00000000000000000000000000000000
05:00000000000100000000000000000000

6:00100000000000100000000000000000
7:00000000000000000000000000000000
8:00000000000000000000000000000000

9:01000000000000000000000000000000
10:10000000000000000000000000000000

1:00100000000100100000000000000000
200000000000000000000000000000000
3:00100000000100000000000000000000
400000000000000100000000000000000

- 15:11000000000000000000000000000000

6:00000000000000000000000000000000

7:11000000000000000000000000000000
8:00000000000000100000000000000000

9:00100000000100000000000000000000
20:00000000000000000000000000000000

1:00100000000100100000000000000000
2.10000000000000000000000000000000
3:01000000000000000000000000000000

400000000000000000000000000000000
2:11000000000000000000000000000000

6:00000000000000100000000000000000

7:00010000000100000000000000000000
8:00000000000000000000000000000000

9:00010000000100000000000000000000
30:00000000000000100000000000000000

1:11000000000000000000000000000000
200000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ&

FI1G.9D

U.S. Patent

July 12, 1994 Sheet 14 of 20

DIAGRAPH
METHOD

USE

ENHANCED

ALPHABET
?

ADD AN “$" TO EACH END
OF THE CHARACTER STRING

POINT TO FIRST CHARACTER
AS THE CURRENT CHARACTER

INCLUDE CURRENT CHARACTER
AND NEXT CHARACTER IN THE
CURRENT DIAGRAPH FRAGMENT

POINT TO THE NEXT CHARACTER
AS THE CURRENT CHARACTER

IS

THE CURRENT

CHARACTER THE LAST

CHARACTER
?

YES
RETURN

FIG.10

5,329,598

Sheet 15 of 20 5,329,598

July 12, 1994

U.S. Patent

§10000000000000000000000000000000
C:00000000001000O000000000000000C00O00Q

D:000000000000000000000000000000600
£:00000000000000000000000000000000

F:00000000000000000000000000000000
6:00000000000000000000000000000000

H:00000000000000000000000000000000

1:00000000000000000000000000000000

J:;00000000000000000000000000000000
K:00000000000000000000000000100000

L:00000000000000000000000000000000
M000O0OOOO0O000000000O000000000000000

N:00OOO0OOOOOOO0O1100000000000000000
0:00100000000000000000000000000000

P:00000000000000000000000000000000
Q:00000000000000000000000000000000

R:0000000O00000O000O00000000000000000

S:0000000000000000O00C0QO0O00O0O0O0O0OO0000O0OD

1:000000000000000000000000000000600
U:00000000000000000000000000000000
v:00000000000000000000000000000000
W.00000000000000000000000000000000

X:00000000000000000000000000000000
Y:0000000000000000000000000000000°0

:00000000000000000000000000000000
01000000000000000000000000000000

:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:000000000000000000000O000O0Q0000000

:000000000000000000000O0O0OOQOC0OO0OOO0OO
ABCDEFGHIJKLMNOPQRSTUVWXYZ&

FIG.11A

Sheet 16 of 20 5,329,598

July 12, 1994

U.S. Patent

B:10000000000000000000000000000000
C:00000000001000000000000000000000

D:00000000000000000000000000000000

£:00000000000000000000000000000000

F00000000000000000000000000000000
6:00000000000000000000000000000000

H:00000000000000000000000000000000

1:00000000000000000000000000000000

J:00000000000000000000000000000000

K:00000000000000000000000000100000

L:00000000000000000000000000000000
M00000000000000000000000000000000

N:000O00O0O0OO0OOO0OO0O0000000000000000000
0:00100000000000000000000000000000

P:00000000000000000000000000000000
:00000000000000000000000000000000

R:00000000000000000000000000000000

5:00000000000000000000000000000000

1:00000000000000000000000000000000
U:00000000000000000000000000000000

v:00000000000000000000000000000000
W:.00000000000000000000000000000000

X:00000000000000000000000000000000
y:00000000000000100000000000000000

:00000000000000000000000000000000
&01000000000000000000000000000000

:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ¢&

FIG.11B

Sheet 17 of 20 5,329,598

July 12, 1994

U.S. Patent

B:00000000000000000000000000000000

€:00000000000000000000000000000000

D:00000000000000000000000000000000

E:00000000000000000000000000000000
F:00000000000000000000000000000000
:00000000000000000000000000000000

H:00000000000000000000000000000000

1:00000000000000000000000000000000

J:00000000000000000000000000000000

K:00000000000000000000000000000000

L:00000000000000000000000000000000
M00000000000000000000000000000000
NOO0OO0OOOOOOOO0001100000000000000000

0.00000000000000000000000000000000

P.00000000000000000000000000000000
Q:00000000000000000000000000000000
R.00000000000000000000000000000000

5:00000000000000000000000000000000

1:00000000000000000000000000000000
U:00000000000000000000000000000000
v:00000000000000000000000000000000
w.00000000000000000000000000000000

X:00000000000000000000000000000000

y:00000000000000100000000000000000
£:00000000000000000000000000000000
&00000000000000000000000000000000

:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000

ABCOEFGHIJKLMNOPQRSTUVWXYZ&

FIG.11C

Sheet 18 of 20 5,329,598

July 12, 1994

U.S. Patent

El0000000000000000000000000000000

€:00000000001000000000000000000000
0:00000000000000000000000000000000

£:00000000000000000000000000000000

F00000000000000000000000000000000
6:00000000000000000000000000000000
H:00000000000000000000000000000000

.00000000000000000000000000000000

J:00000000000000000000000000000000

K:00000000000000000000000000100000

L:00000000000000000000000000000000

M00000000000000000000000000000000
NNOOOOOOOOOOOOODOO0000000000000000
0:00100000000000000000000000000000

P:00000000000000000000000000000000
Q:00000000000000000000000000000000

R:00000000000000000000000000000000

5:00000000000000000000000000000000

1:.00000000000000000000000000000000

U:00000000000000000000000000000000
v:00000000000000000000000000000000
Ww.00000000000000000000000000000000

X:00000000000000000000000000000000

y:00000000000000000000000000000000

2:00000000000000000000000000000000
&01000000000000000000000000000000

:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000
:00000000000000000000000000000000

ABCDEFGHIJKLMNOPQRSTUVWXYZ&

FIG.11D

U.S. Patent July 12, 1994 Sheet 19 of 20 5,329,598

| |
20T 0

FI1G.12

U.S. Patent July 12, 1994

Sheet 20 of 20

5,329,598

5,329,598

1

METHOD AND APPARATUS FOR ANALYZING
CHARACTER STRINGS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and appara-
tus for analyzing character strings generated by optical
character recognition of handwritten character strings.

2. Description of Related Art

One of the primary demands for optical character
recognition (OCR) is as a method to replace keypunch-
ing or hand entry of information from forms that were
filled out by hand. Much of the information from these
forms consists of words or character strings that are
chosen from a list that is either explicitly defined for or
implicitly known by the person filling out the forms.

One example of such a form is the list of various
diseases that are explicitly stated or implicitly known to
a person when completing an insurance application
form. Another example comprises much of the informa-
tion on the United States Census Form. One particular
example from the United States Census Form is the
ethnic background section, especially the implicit list of
native American Indian tribes.

When trying to identify words read from forms that
have been filled out by hand, problems beyond the
normal spelling errors occur, and the error rate is much
greater than for OCR of machine printed characters.
When attempting to form optical character recognition
of even reasonably clearly printed machine character
strings, an OCR system will create insertion, deletion,
substitution and segmentation errors. These normal
OCR errors are compounded by normal handwriting
errors. These errors include poorly formed letters, non-
standard orientations, poor spacing between letters, and
the normal variety in the types of pens and pencils used
to write with.

Conventional word identification methods are quite
sensitive to deletions, insertions and segmentation er-
rors at various locations in character strings. Examples
of such prior art methods are the methods used to verify
spelling implemented with many word processors.
However, the various method developed for checking
the spelling in word processing and other applications
are oriented towards identifying misspellings based on
human typographical and cognitive errors.

For example, U.S. Pat. Nos. 4,730,269 and 4,580,241
to Kucera et al. discloses a method for transforming a
misspelled word into a word skeleton by replacing let-
ters with a general phonetic equivalent. Such a system is
useless in attempting to correct OCR generated mis-
spellings, as OCR errors have no relationship to the
cognitive human errors discoverable by the phonetic
skeleton scheme of Kucera et al.

Another example is U.S. Pat. No. 4,903,206 to Itoh et
al., which discloses a method for ensuring that the cor-
rect character string for a misspelled character string is
in a selected list of possible correct character strings
chosen from a larger dictionary. The method of Itoh et
al. assumes (correctly for typographical and cognitive
errors) that characters having the lowest frequency of
use have the highest probability of being correct. Such
an assumption makes the method useless in correcting
OCR-generated errors, as the likelihood of a character
being incorrectly included or excluded from an OCR-

5

20

25

w

0

60

2
generated character string is dependent upon the way
an individual prints.

These methods can identify any number of possible
words to replace the misspelled word when the mis-
spelling is caused by typing or cognitive errors. How-
ever, few of these methods can positively identify the
correct word even when the spelling errors are rather

minor, and they have great difficulty with common
OCR errors.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
method for positively identifying a correct character
string from an original uncorrected character string. It
is also an objective of the present invention to provide
an apparatus which is able to determine the correct
character strings quickly and accurately. A further
object of the invention is to provide information to a
human operator to assist him in determining the correct
character string when the method is unable to positively
identify the correct character string. Another object of
the present invention is to automatically insert the cor-
rect character string in place of the uncorrected charac-
ter string. An additional object of the present invention
is to provide a method that is able to detect different
types of errors with differing sensitivities depending on
the subset of the method used. A final object of the
present invention is to provide a method and apparatus
for identification and correction of uncorrected charac-
ter strings highly efficiently by using a highly parallel
computer architecture implementation.

To achieve the above objects in the method and appa-
ratus according to the present invention, the uncor-
rected character string is divided into at least one set of
character string fragments. One set of uncorrected
character string fragments is generated for each sub-
method implemented by the general method. In addi-
tion, each of the predetermined (allowed) correct char-
acter strings are, or have already been divided into a
plurality of sets of correct character string fragments.
At least one correct character string fragment is gener-
ated for each correct character string provided for each
submethod implemented. A comparison of correspond-
ing character string fragments is made and an error
value determined for each corresponding pair of frag-
ments and a partial error total for the submethod gener-
ated.

Each submethod implemented is relatively insensitive
to different types of possible error. The lowest partial
error value of all the different submethods is then deter-
mined as the total error for that character string. The
correct character string having the lowest total error
value and being under a threshold value is determined
to be the correct character string and is inserted for the
uncorrected character string. It is also desirable to use
the output of one submethod as the input to another
submethod if the correct word is not identified by the
first submethod.

To achieve the above objects in the apparatus accord-
ing to the present invention, a massively parallel com-
puter (MPC) architecture is used. Two special purposes
systolic processors (SPS) are used to control the inputs
to and the outputs from the MPC.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiment of the present invention
will be described in detail with reference to the accom-
panying drawings in which:

5,329,598

3

FIG. 1is a copy of a form which is filled in by hand.

FIGS. 2A-2B is a flow chart of the preferred embodi-
ment of the identifying and correcting method.

FIG. 3 is a flow chart of the SCMV submethod.

FIG. 4 is a flow chart of the SVMC submethod.

FIG. § is a flow chart of the MCMV submethod.

FIG. 6 is a flow chart of the MVMS submethod.

FIG. 7 is a flow chart of the ALPHA submethod.

FIG. 8 is a graphical representation of the percentage
of identified and corrected character strings against the
error threshold value using the first preferred embodi-
ment.

FIGS. 9A-9C are representation of the data planes of
the first preferred embodiment of the comparison step.

FIG. 9D is representative of the data planes of the
second preferred embodiment of the comparison step.

FIGS. 10 is a flow chart of the Digraph sub-method.

FIGS. 11A-11D are representation of the data planes
of the third preferred embodiment of the comparison
step.

FIG. 12 is a block diagram of the apparatus of the
present invention.

FIG. 13 is a block diagram of the SPS2 of FIG. 12.

Appendix I is a printout from a trial run of the first
preferred embodiment on a list of possibly misspelled
character strings.

Appendix II is a printout from a trial run of the sec-
ond preferred embodiment on a list of possibly mis-
spelled character strings.

Appendix III is a printout from a trial run of the third
preferred embodiment on a list of possibly misspelled
character strings.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The method and apparatus embodying the present
invention will be described hereinafter with reference
to FIGS. 1-13 and Appendices I-1I1.

As shown in the sample handwriting form of FIG. 1,
a person is required to complete the form by hand. One
such actual example of this is the Census question which
requires identifying which, if any, Indian tribe the per-
son belongs to. Because the list is long, the allowed
answers to the questions cannot be provided on the
form. Appendices I-III each show a truncated list of
correct character strings and simulated OCR errors for
demonstration purposes. However, in comparison to
the vocabulary of the English language, the number of
permissible answers to the question is rather limited.
Also, the list of predetermined correct character strings
often contain multiple words that should be treated as a
single word, which is not the case in a conventional
English-language dictionary. For example, Iowa Iro-
quois is included in the sample list as
“IOWAIRIQUOIS”. This list of permitted answers
defines the “correct character strings”. Because this list
of correct character strings can be predetermined based
on the question, it can be prestored in electronic data
form.

To further improve the efficiency of the method, the
list of correct character strings are stored in fragment
form. That is, the predetermined submethods to be used
on these forms are applied to the list of correct charac-
ter strings, and the resulting fragments are stored in
memory as fragment sets. When performing the com-
parison step, the previously generated fragments for
each correct character string are loaded directly into
the comparison means.

10

15

20

25

30

35

40

45

50

55

60

65

4

As can also be seen in FIG. 1, the handwritten answer
to the question requesting the person’s handwriting
contains poorly formed letters, improper spacing, and
other common handwriting traits. Because these traits,
though common, are non-standard, they are an impor-
tant source of optical character recognition errors.

These errors include substitution, insertion, deletion,
transposition and segmentation. Substitution errors are
caused by replacing one of the correct letters in a char-
acter string with an incorrect letter. Looking at line 4 of
Appendix I, the test string “yrikara” is a substitution
error misspelling of “arikara”, wherein the leading *‘a”
is replaced by a “y”.

An insertion error is caused by placing an extra letter
into a correct character string. Looking at line 46 of
Appendix I, the test string “nocotka” is an insertion
error misspelling of “nootka” wherein a “c” has been
inserted between the first and second “0”.

A deletion error is caused by removing a letter from
a correct character string. On line 50 of Appendix 1, the
test string “‘seinole” is a deletion error misspelling of the
correct string “‘seminole” wherein the “m” between the
first “e” and the “i” has been deleted.

A transposition error is caused by reversing or scram-
bling the order of two or more correct characters in a
character string. These errors, while quite common in
handwriting, are actually quite rare in OCR systems.

A segmentation error is caused by a combination of
two or more of the above-type errors. For example, on
line 5 of Appendix I, the test string “bayock” shows a
substitution-deletion segmentation error. In this error,
for the correct string “bannock”. The first “n” has been
substituted with “y” and the second “n” has been de-
leted. A substitution-addition segmentation error, for
example, is shown in line 15 of Appendix I. The correct
character string ‘“‘cree” has been misspelled as “wtree”.
In this misspelling, the incorrect character “w” has
been substituted for the correct character “c” while an
incorrect character “t” has been inserted. A substitu-
tion-transposition segmentation error is shown, for ex-
ample, on line 11 of Appendix II. The correct character
string “chinook” has been misspelled “chinokw”. In this
misspelling, the incorrect character “w” has been in-
serted for the second “0”, then this incorrect character
“w” was transposed with the correct character “k”.
Alternatively, this can also be viewed as a deletion-
insertion segmentation error, where the second “0” has
been deleted, and the “w” has been inserted.

In the first preferred embodiment of the apparatus, a
host OCR system 80 is connected to a massive parallel
computer (MPC) 60 through a first systolic processor
structure (SPS1) 50 and a second systolic processor
structure (SPS2) 70, as shown in FIG. 12. In conven-
tional optical character recognition (OCR) systems, the
OCR can be implemented using either hardware or
software systems. The host OCR system 80 is imple-
mented using a general purpose computer 40, a scanner
20 and a special purpose massively parallel processor
(MPP) 30 implementing the OCR. Alternatively, the
OCR can be implemented in software in the general
purpose computer 40. In the preferred embodiment of
the apparatus, either system of OCR is preferred.

In the preferred embodiment, a form such as that
shown in FIG. 1 is presented to the scanner 20, which
generates a serial data signal and transmits it to the
general purpose computer 40. The serial data signal is
representative of a bitmap of the handwriting sample
form of FIG. 1. The general purpose computer 40 stores

5,329,598

5

the data transmitted from the scanner 20 into a first
memory area 42. The general purpose computer 40 then
transmits the bitmap data to the MPP 30 which converts
the bitmap data into uncorrected character strings. The
MPP 30 then transmits the uncorrected character
strings back to the general purpose computer 40 which
stores them in the first memory area 42. Alternatively,
the general purpose computer 40 could convert the
bitmap data to uncorrected character string data using
the general purpose microprocessor 46.

The general purpose computer 40 then generates
character string fragments from the uncorrected char-
acter strings and transmits them to SPS1 50. Addition-
ally, the general purpose computer 40 also transmits the
correct character string fragments to the SPS1 50. The
correct character string fragments are predetermined,
and have been previously stored into a second memory
area 4.

The SPS1 50, SPS2 70 and massively parallel com-
puter 60 are all organized with a generally planar archi-
tecture. In the planar architecture MPC 60, the memory
registers and processors are each organized into a two-
dimensional M XN dimensional array of elementary
structures. Each M;, Njarray point of the memory and
register arrays stores one bit, and acts as the input or
output source for the M;, N; one-bit processors.

In addition a limited number of machine instructions
exist to copy the bit pattern in one memory or register
array into another memory or register array or to set
the bits in a memory or register dependent upon the bit
patterns in another memory register array. Most ma-
chine instructions of the MPC 60 execute in one or two
clock cycles, and none take more than a few clock
cycles.

The special purpose systolic processors 50 and 70 are
designed so that the output register plane 54 of SPS1 50
and input register plane 71 of SPS2 70 have the same
architecture as the register planes of MPC 60. This
allows the contents of the SPS1 50 output register 54 to
be transmitted to the MPC register planes in a minimal
number of clock cycles. Likewise, a register plane of
MPC 60 can output its content to the SPS2 70 input
register plane 71 in a minimum number of clock cycles.

The memory and register planes in an SPS are orga-
nized into a one-dimensional array of bits as in a con-
ventional serial computer, as shown in FIG. 13. The
input register plane 71 of the SPS2 70 is divided into M
one-dimensional arrays of N bits each. However, the
data stored in these arrays are not interpreted as binary
representation of numbers.

The processors 56 and 72 of SPS1 50 and SPS2 70 are
organized into a two-dimensional array of one-bit pro-
cessors which use the one-dimensional memory and
register arrays as input and output sources. All of the
one-bit processors in the processor array need not be
the same type of processor or carry out the same type of
function. Generally, however the nth processor of each
row will be performing the same function. In operation,
the first column of each row of processors in the proces-
sor array takes its input from one of the one-dimensional
memory or register arrays, and outputs to the next pro-
cessor in the row. At each clock cycle, the output of
each column of processors becomes input to the next or
downstream column of processors, until the last proces-
sor of each row outputs the data to a memory or register
array. In this manner, the SPS1 50 is able to convert the
corrected and uncorrected character string fragments
from the character data form used by the general pur-

10

—

5

20

25

40

45

50

55

60

65

6
pose computer 40 to the planar architecture form used
by the MPC 68, as shown in FIGS. 9a or 95. Likewise,
the SPS2 70 can convert the planar data form used by
the MPC 60 to information in a form usable by the
general purpose computer 40.

FIG. 13 shows a preferred embodiment of SPS2. The
input register plane 71, which receives its data from the
MPC consist of M registers each having N bits. Each of
the M registers of register plane 71 gets its input directly
from a corresponding row register of the MPC 60. The
systolic processor 72 consists of W rows (W=M), each
row having Z one-bit processors connected serially.
Output register banks 73-78 act as output registers for
the systolic processor 72. Register banks 73, 76, 77 and
78 each have M registers. Output register bank 74 has at
least M/m registers, where m is equal to the number of
fragments formed per character string. Qutput register
bank 75 has one register. In operation, the data output
from the MPC 60 is stored in the input register plane 71.
After some additional number of clock cycles T4, the
register bank row 73; (=0 to M —1) contains the sums
of all of the one bits that were in the input register 71;at
t=0. After some additional number of clock cycles Tp,
the kth register bank row 74x (k=0 to [(M/m)—1])
contains the sum of the register bank rows 73;, where
j=k*m to ([k+1]*m)— 1. After some number of clock
cycles T, the output register 75 contains the sum of all
of the register bank rows of register bank 74 input at a
time T=T4+Tp+Tcclock cycles earlier. The output
registers 76-78 are register stacks which contain the
coded memory addresses of the input set that produced
a lowest or greatest bit counts in one of the other regis-
ters. In the preferred embodiment, the memory is coded
based on the number of clock cycles corresponding to
the register bank having the least (or greatest) values
since the systolic processor 72 last received a register
enable signal. Each of the register banks 76-78 are en-
abled separately. Output register 76 stores the coded
memory addresses corresponding to the output register
bank 73, while register bank 77 corresponds to output
register bank 74, and output register bank 78 corre-
sponds to output register 75.

In the first preferred embodiment of the method,
information from a form, such as a census form or insur-
ance form, has been completed by hand. The requested
information in the provided space is input into elec-
tronic data storage by scanning the form to provide a
signal output indicative of the handwritten character
string. The signal is then provided to an optical charac-
ter recognition system (OCR) to convert the scanner
signal to an uncorrected character string representative
of the handwritten character string.

The optical scanner 20 converts the entire form into
a bitmap pattern. For instance, the zero bits of the bit-
map represent a 0.05 mm by 0.05 mm white space on the
form, while the one bits represent a 0.05 mm by 0.05 mm
black space. The location of each bit in the bitmap cor-
responds to the location of the white or black space on
the form. This bitmap pattern is transmitted by a scan-
ner 20 to the general purpose computer 40. The OCR
system then converts the bitmap pattern into an uncor-
rected character string by isolating a bit field where the
handwritten answer to a question has been provided
(field isolation), dividing the bit field into one subfield
for each character (segmentation) and designating a
character from an allowed set of characters to each
subfield (recognition). This uncorrected character

5,329,598

7 .
string may differ in any of the various ways described
above from the intended handwritten character string.

This uncorrected electronic character string is then
stored in a memory or a register. Preferably, the correct
character strings are already stored in memory in alpha-
betical order. However, the correct character strings
can be stored in any manner whatsoever, so long as
each one is able to be selected exactly once per compari-
son to the uncorrected character string.

At this point, the uncorrected character string is
divided into at least one character string fragment set.
Each of the at least one fragment sets is formed by
applying a different predetermined character string
fragmentation submethod to the uncorrected character
string and each fragmentation set consists of at least one
character string fragment. Each set of uncorrected
character string fragments is then stored in 2 memory or
a register or transmitted to the comparison means.

To compare the uncorrected character string frag-
ments with the corrected character string fragments,
the uncorrected character string fragments for the un-
corrected character string are loaded into a first data
plane of the comparison means. The fragment sets of the
current correct character string are copied from mem-
ory and loaded into corresponding locations on a sec-
ond data plane of the comparison means. As each prede-
termined character string fragment of a set is compared
to the corresponding uncorrected character string frag-
ment of the corresponding set, an error value is gener-
ated indicative of the difference between the characters
present in the correct character string fragment and the
characters present on the uncorrected character string
fragment.

For each set of fragments, a partial value indicative of
the total difference between the uncorrected character
string as fragmented and the corrected character string
as fragmented is generated. Then the lowest partial
value of the partial values generated for each pair of
character string fragment sets is determined to be the
total value for the difference between the uncorrected
character string and the current correct character
string.

The first such current correct character string (or its
address pointer) along with its total value is then stored
in memory, and the next correct character string is
selected, and the process repeated. As the total value for

. each succeeding correct character string is determined,
the total value of the current correct character string is
compared to the total value of the lowest previous cor-
rect character string. A current correct character string
or address pointer having a lower or equal total value is
also saved in memory. In the preferred embodiment, a
stack memory is provided, wherein new lower values
are pushed onto the top of the stack, and old higher
values are dropped off the bottom. The stack memory
may be any number of layers thick, and should be se-
lected depending on the number of possible correct
character strings being used, and the overall similarity
of the correct character strings. For lists of correct
character strings like the one used here, as for example
in Appendix I, and for most short lists, a stack memory
of 5 levels is preferred. For longer lists, larger stacks are
desirable.

Once all of the correct character strings have been
compared to the uncorrected character string, a deter-
mination is made whether the lowest total value is
unique. If the lowest total value is not unique, (that is, if
two or more correct character strings have generated

8

the same lowest total value) then no automatic correc-
tion to the uncorrected character string is possible. If
the lowest total value is determined to be unique, and it

_ is determined to be higher than a predetermined thresh-

—

5

20

25

30

35

40

45

55

65

old value, again no automatic correction to the uncor-
rected string is possible. When the lowest total value is
both unique and below or equal to the threshold value,
then the uncorrected character string is replaced by the
correct character string and the correct character string
is transferred to an output device, such as a non-volatile
storage device, a printer, a monitor, or the like.

When a unique lowest correct character string is
found, it is transferred to the output device, and all the
other data on the stack is abandoned. If a unique and
low threshold character string is not found, the data
from the stack is either transferred to an output device
for current, on-line interactive operator determination
of the correct character string, or to a storage device for
later off-line operator determination of the correct char-
acter string, or stored for use as a new shortened list of
correct character strings or address pointers for another
of the submethods being described herein.

Selection of the threshold value is a trade-off between
maximizing the number of total corrections made and
minimizing the number of erroneous corrections substi-
tuted. FIG. 8 shows that for the list provided and the
fragmentation submethods of FIGS. 3-6, a threshold
value of 5 provides an appropriate ratio of corrections
to errors, if an error rate of 2% can be tolerated.

In a first preferred embodiment of the step of generat-
ing character string fragments from character strings,
the actual order of the characters in the fragment is not
important. Accordingly, in the first preferred embodi-
ment of the character string fragments, the characters
within each fragment are stored in alphabetical order. It
is also unimportant whether one or more of the same
character appear in any one fragment. Accordingly, all
duplicate characters in any fragment are eliminated.

In the first preferred embodiment, four different frag-
mentation submethods are employed, and each frag-
mentation submethod divides the character strings into
at most four character string fragments. If a character
string would divide into more than four fragments, all
of the fragments beyond four are disregarded.

In addition, the accuracy of the preferred submethods
depends on the absolute number of characters on the
string. Accordingly, character strings of at least 7 char-
acters are preferred. If a string has less than 7 charac-
ters, characters within the character string are dupli-
cated.

Preferably, the beginning characters are added onto
the end of the string, but any method of adding addi-
tional characters will work. Additionally, fragmenta-
tion schemes which provide for minimum numbers of
fragments, a fixed number of fragments or an unlimited
number of fragments will also work with the preferred
submethods.

In the first preferred embodiment, implementing four
fragmentation submethods, the four submethods are:

the single consonant, multiple vowel (SCMV) sub-
method;

the single vowel, multiple consonant (SVMC) sub-
method;

the multiple consonant, multiple vowel (MCMV)
submethod; and '

the multiple vowel, multiple consonant (MVMC)
submethod.

9

In the first preferred embodiment of the fragmenta-
tion step, it is preferred to apply the four submethods
both from the beginning of the four strings and from the
ends of the strings, for a total of 8 sets of character
fragments of 4 fragments each for a total of 32 frag-
ments. In the examples set forth below, only front to
end conversions are illustrated.

The SCMV submethod shown in FIG. 3 is based on
providing character string fragments which have at
most a single consonant and may have any number of
vowels. The SCMV submethod works by taking a char-
acter string and placing characters from the string in the
first fragment until the first consonant is found. That
consonant then begins the next fragment and the char-
acters of the character string are placed into the second
fragment until the next consonant is found. Each frag-
ment is then formed in the same manner until at most
four fragments are formed. Of course, should the char-
acter string begin with a consonant, the first character
string would include that consonant and any following
characters until the next consonant is found.

For example, to fragment the correct character string
“bannock” using the SCMV submethod, the first frag-
ment will consist of the letters “ab”. Because “bannock”
begins with a consonant, the first fragment includes the
consonant and the following vowel. The next fragment
includes the next consonant “n” and no other characters
as a consonant immediately follows. The third fragment
then consists of the next consonant and the following
vowel “no”. The fourth and last fragment then consists
of the consonant “c”. The consonant “k” is not included
because it would form the fifth fragment. The charac-
ters are stored in alphabetical order, as the particular
order which they would appear in the fragment is irrel-
evant, as shown in rows 1-4 of FIG. 9A.

The SVMC submethod shown in FIG. 4 is based on
providing character string fragments which have at
most a single vowel while they may have any number of
consonants. Under the SVMC submethod, character
string fragments are formed by placing the characters of
the character string into the first fragment until the first
vowel is found. That vowel then begins the second
character string fragment. The characters of the charac-
ter string are placed in the second fragment until the
next vowel is found. The process is then repeated to
form the remaining character string fragments. Of
course if the character string begins with a vowel, the
first vowel and any following consonants are placed in
the first fragment.

For example, taking the correct character string.

“bannock” and applying the SYMC submethod to it to
generate character string fragments, the first fragment
consist of the consonant “b”. The second fragment
consist of the characters “ann”. However, since the
character “n” is duplicated, and only a single example
of each character is necessary, the second “n” is de-
leted. The third fragment then consists of the characters
“cko”. Because all of the characters of the string have
been placed into a fragment, the forth fragment is left
empty. Again, the characters are stored in alphabetical
order, and not the order in which they appeared in the
character string, as shown in rows 9-12 of FIG. 9A.
The MCMYV submethod shown in FIG. 5 is based on
providing character string fragments which group into
single fragment strings of consecutive consonants, and
any number of vowels following the consonants. The
fragments are formed by placing the characters of the
character string into the first fragment until a vowel

10

20

25

30

35

40

45

50

60

65

15,329,598

10

followed by a consonant is found. The vowel is then
placed into the current fragment and the next fragment
is begun with a consonant. The characters of the char-
acter string are then placed into the second character
string fragment until the next vowel-consonant combi-
nation is found. The combination is divided as above,
and the rest of the character string is fragmented as set
forth.

For example, applying the MCMYV submethod to the
correct character string “bannock”, the first character
string consists of the characters “ab” as the character
pair *“an” is the first vowel-consonant combination
found. The second fragment therefore consists of the
characters “nno”, which is reduced to the character
string “no”. The final character fragment therefore
consists of the characters “ck”. These fragments are
shown graphicaily in rows 17-20 of FIG. 9A.

The MVMC submethod shown in FIG. 6 is based on
providing character string fragments which group into
asingle fragment strings of consecutive vowels, and any
number of consonants following them. The character
string fragments are formed by placing characters from
the character string in the first fragment until a conso-
nant followed by a vowel is found. The consonant-
vowel combination is divided so that the consonant is
placed in the current character string fragment while
the vowel begins the next character string fragment.
The characters are then placed in the next character
string fragment until the next consonant-vowel combi-
nation is found and the process is repeated.

Applying the MVMC submethod to the correct char-
acter string “bannock”, the first fragment consists of the
letter “b”, as the first consonant vowel combination are
the characters “ba”. The second fragment therefore
consists of the characters “ann”, which is reduced to the
characters “an”. The third fragment therefore consists
of the characters “cko” and the forth fragment is empty.
These fragments are shown graphically in rows 25-28
of FIG. 9A.

Close examination of the SVMC and the MVMC
submethods for fragmenting the string “bannock” re-
veals that the character fragments generated are identi-
cal. This can be seen graphically by comparing rows
9-12 and rows 25-28 of FIG. 9A. This occurs because
there are no groups of two or more consecutive vowels
such as are found, for example, in the correct character
string “iowairoquois”. In contrast, the character string
fragments for the correct character string
“iowairoquois” under the SCMV and MCMV would
also be identical as there are no groups of two or more
consecutive consonants as are found in the correct char-
acter string “bannock”.

The first preferred embodiment for determining the
partial values and total values from the comparison of
the uncorrected character string fragments and the
fragments from the correct character strings will be
described below in reference to comparisons between
the uncorrected character string “bayock” and the cor-
rect character string “bannock”. Applying the SCMV
fragmentation method to the correct string “bannock”,
the character string fragments created are “ab”, “n”,
“no”, and *“c”. Applying the SCMV submethod to the
uncorrected character string “bayock” produces the
character string fragments “ab”, “oy”, *“c”and “k”
shown in rows 1-4 of FIG. 9B. Comparing the corre-
sponding fragments produces fragment error counts of
zero for the first fragment pair, three for the second
fragments corresponding to the unmatched characters

5,329,598

11

“0”, *n”, and “y”, three for the third character frag-
ments corresponding to the unmatched characters “c”,
“n”, and “0” and two for the fourth character string
fragment pair corresponding to the unmatched charac-
ters “c” and “k” as shown in rows 1-4 of FIG. 9C. This
gives a partial value of eight for the set of character
string fragments corresponding to the SCMV.,

Applying the SVMC to the character string ‘“ban-
nock” produces the character string fragments “b”,
“an”, “cko”, and an empty fourth fragment. Applying
the SVMC submethod to the uncorrected character
string “bayock” 30 produces the character string frag-
ments “b”, “ay”, “cko”, and an empty fourth fragment
as shown in rows 9-12 of FIG. 9B. Comparing the
corresponding character string fragments, the first,
third and fourth character string fragment pairs have no
unmatched characters and produce a zero error count.
A comparison of the second fragment produces the
unmatched characters “n” and “y” as shown in row 10
of FIG. 9C, for an error count of two, and a partial
value of two.

Applying the MCMYV to the correct character string
“bannock” places the character string fragments “ab”,
“no” “ck” and an empty fourth fragment Applying the
MCMYV submethod to the uncorrected character string
“bayock” produces the fragments “ab”, “‘oy”, “ck”, and
an empty fourth fragment as shown in rows 17-20 of
FIG. 9B. Comparing corresponding fragments pro-
duces an error count of zero for each of the first, third
and fourth fragment pairs, as there are no unmatched
characters. Comparing the second fragment produces
an error count of two for the unmatched characters “n”
and *y”, as shown in row 18 of FIG. 9C and a partial
value of two.

Applying the MVMC to the character strings “ban-
nock” and “bayock” produces the same character frag-
ments as the SVMC submethod as shown in rows 25-28
of FIG. 9B and row 26 of FIG. 9C. Accordingly, the
error count for the MVMC submethod is two. There-
fore, the lowest partial value for all the fragments is 2.
Applying each of the four submethods from the ends of
the character strings forward produces partial error
values of 5 for the SCMV submethod, and 2 for each of
the other submethods. Referring now to Appendix I,
line 5, applying the method to the uncorrected charac-
ter string “bayock”, and using the right-most list in
Appendix I which shows the correct character strings,
the correct character string “bannock” is selected as the
proper correction of the uncorrected character string
“bayock”. Line 4 gives an example where the wrong
correct character string was chosen. The “48” in the
last column means that “OKINAGA” was chosen in-
stead of the correct “ASSINIBOINE”.

One obvious disadvantage of the first preferred em-
bodiment described above is the large amount of pro-
cessor time consumed in a serial comparison of the
multiple character string fragments for each of the sub-
methods for each of the correct character strings with
the multiple fragments of the submethods of the uncor-
rected character string. A number of other comparison
methods are available to obviate this disadvantage.

In the first preferred embodiment of the comparison
step, the comparison of two corresponding character
fragments is made by implementing the comparison step
in a highly parallel computer architecture. In this paral-
lel architecture, an array row of at least 26 one-bit pro-
cessors is provided for each character string fragment.
Each bit of data input to each one-bit processor corre-

25

30

35

40

45

55

60

12

sponds to the presence or absence of a character in that
fragment. For example, applying the first preferred
embodiment to the SVMC-generated fragments of the
character strings “bannock” and “bayock” produces
the input data arrays shown in lines 1-4 of FIGS. 9A
and 9B, respectively, for an array of 32 rows of 32 bits.
Loading all 32 fragments generated for each of the
correct and uncorrected character strings requires a
processor plane of 32 columns of 32 rows of parallel
processors for each character string, as shown in FIGS.
9A-9B. Each 32X 32 array of parallel processors is able
to combine two input data planes as shown by FIGS.
9A and 9B, into one output data plane, as shown by
FIGS. 9C or 9D.

The comparison step can then be provided by com-
bining corresponding locations of the two input data
planes by the logical “XOR” operation to produce the
output data plane shown in FIG. 9C. By then adding the
outputs of all of the one bit parallel processors for each
of the eight groups of four rows, representing the 8 sets
of fragments, the partial values for the fragment com-
parison of the strings “bannock” and “bayock” can be
quickly generated. By providing 32 rows of the 32 one-
bit processor rows, enough processors are supplied to
simultaneously compare eight different character frag-
ment sets for each of the uncorrected character string
and the current correct character string, generated by
the four preferred fragmentation submethods working
in each direction, each set containing four character
fragments of a uncorrected character string or a correct
character string. In the first preferred embodiment the
sum of the one bit in each group of four rows would be
calculated simultaneously in a single machine cycle.

An alternative method would be to define a metric
indicative of the total value in an abstract character
space between the individual correct character strings,
and storing the correct character string data in order
according to this metric instead of alphabetically. In this
way, if the total value between an uncorrected charac-
ter string and a correct character string is small, then it
is generally more probable that the total value will be
small between the uncorrected character string and a
second character string having, in metric space, a
smaller difference between the first correct character
string than a third correct character string having, in
metric space, a large difference between the first char-
acter string. In this way, more efficient search strategies
can be applied to further reduce the number of compari-
sons that need to be made between the uncorrected
character string and obviously inappropriate correct
character strings.

In a second preferred embodiment of the comparison
step, after the 32 fragments for the correct and uncor-
rected character strings are provided as input into the
processor plane, the fragments are compared by both an
“XOR?” logical operation and an “AND” logical opera-
tion. The result of the “XOR” comparison, shown in
FIG. 9C, gives a positive or logical one result when
characters in the two comparative fragments do not
correspond, thereby generating a value for the “misses”
between the two character string fragments. The result
of the logical “AND” operation, shown in FIG. 9D for
the fragments in FIGS. 9A and 9B, produces a positive
or logical one result when the characters appear in both
character string fragments, thereby generating a value
for the *matches” between the character string frag-
ments. By subtracting the “matches” from the “misses”
a new error count giving an improved correction-to-

5,329,598

13
error ratio for any given threshold is obtained. Appen-
dix II shows a trial run using the second preferred em-
bodiment of the fragmentation step. Alternatively, a
third preferred embodiment uses only the “AND” oper-
ation to implement the comparison step to provide only
a single comparison value equal to the “Matches”.

In a second preferred embodiment of the identifica-
tion and correction method, the four submethods of the
first preferred embodiment are supplemented with a
further character string fragmentation submethod, per-
formed before the four previously disclosed submeth-
ods. This submethod is the “ALPHA” submethod. In
the ALPHA submethod shown in FIG. 7, only a single
character string fragment is created. The character
string fragment includes all of the characters of the
character string in alphabetical order with duplicate
characters eliminated. In this second preferred embodi-
ment, the correct character strings have also been previ-
ously fragmented by this submethod, and the results
stored in memory. Like the other fragments generated,
the comparison between the uncorrected character
string ALPHA fragment and the correct character
string ALPHA fragments can be implemented in the
parallel architecture, but each unknown string can be
compared with 32 different correct strings simulta-
neously. Also, the sums of the ones bits in each row

- would be computed simultaneously in a few machine
cycles.

The ALPHA submethod allows the correct charac-
ter strings to be pre-screened, so that only the most
likely correct character sets are compared using the
other four fragmentation submethods. The pre-screen-
ing step can either be implemented using a threshold to
determine which correct character strings are stored in
memory as the new list of predetermined character
strings, as shown in FIG. 24, or by saving the correct
character strings having the lowest comparison values
to a stack memory as shown in FIG. 2B.

Appendix II shows the application of the alpha
method to a shortened list of character strings repre-
senting indian tribes. The leftmost column numerically
identifies the correct character strings set forth in col-
umn 2. Column 3 provides a list of uncorrected charac-
ter strings arranged opposite the corresponding correct
character strings. Column 4 indicates, from the applica-
tion of the ALPHA embodiment, which uncorrected
strings could be positively identified and corrected,
represented by a ““0”, and which uncorrected character
strings cannot be positively identified, represented by a
“1”. Column 5 indicates which correct character string
produces the lowest total value using the alpha method.
Using the ALPHA embodiment, 14 of the uncorrected
character strings were positively identified without
error, and of the 37 other uncorrected character strings,
only eight of the uncorrected character strings were
misidentified.

Appendix I shows the results applying the SCMV et
al. embodiment to the results generated by the ALPHA
embodiment of Appendix II. Looking at column 4 of
Appendix 1, only two of the 51 uncorrected character
strings could not be positively identified using a thresh-
old value of three. In addition, of the two uncorrected
character strings which were not under the threshold of
three, one was also correctly identified. Of the 49 char-
acter strings which were positively identified, only two
uncorrected character strings were misidentified. These
two uncorrected character strings have an exceedingly
high number of errors in them, and are used for demon-

20

25

35

40

45

50

55

60

65

14

stration purposes. In a much longer list of uncorrected
character strings, the error rate using the SCMV et al.
embodiment where the ALPHA embodiment was used
to preselect the correct character strings, the error rate
was only on the order of 1 to 2%. In a third preferred
embodiment of the character string fragmentation step,
a further fragmentation scheme, the “Digraph” sub-
method, is implemented. In the Digraph submethod,
shown in FIG. 10, the character strings are fragmented
into a plurality of exactly two-character fragments.
Starting with the first character of a character string,
each Digraph fragment is formed by including the cur-
rent character and the next letter. The next Digraph
fragment is then formed by taking the next character
and the next plus one character and so on until all of the
characters of the character string have been put into at
least one Digraph fragment. The normal character al-
phabet can also be augmented by a 27th symbol, repre-
sentative of a beginning-of-word or end-of-word condi-
tion. For example, the correct word “bannock” can be
represented in the expanded alphabet as “&bannock&”
where the “&” stands for the beginning-of-word and
end-of-word condition. By augmenting short character
strings with the extra character symbol, additional Di-
graph fragments are formed. For example, a three char-
acter string will have only two Digraph fragments in
the unexpanded alphabet but will have four Digraph
fragments in the expanded alphabet. Because the cor-
rection rate of the Digraph fragmentation submethod is
highty dependent on the number of Digraph fragments
created, the large percentage increase in Digraph frag-
ments for small character strings available through the
expanded alphabet increases the range of effectiveness
of the Digraph submethod.

A third preferred embodiment of the comparison
step, the comparison of the uncorrected character string
Digraph fragments and the correct character string
Digraph fragments, will be described in reference to a
comparison between the uncorrected character string
“bayock” and the correct character string *“bannock”.
As described above, applying the Digraph fragmenta-
tion submethod using the expanded alphabet to frag-
ment the correct character string “bannock” produces
the Digraph fragments “&b”, “ba”, “‘an”, “nn”, “no”,
“oc”, “ck”, and “k&”. In the Digraph submethod, each
two-character Digraph is considered to be a new inde-
pendent character. Accordingly, all of these new Di-
graph characters are placed in a single character frag-
ment, in an alphabetized order.

Applying the Digraph fragmentation submethod to
the uncorrected character string *“bayock”, using the
expanded alphabet, produces the Digraph fragments
“&b”, “ba”, “ay”, “yo”, “oc”, “ck”, and “k&”. Again,
the Digraph fragments are treated as independent char-
acters, and are put into a single character fragment and
alphabetized.

In the third preferred embodiment, the global order-
ing of the characters in the character string is disre-
garded, while in the first preferred embodiment, only
the localized ordering of the characters in any single
character fragment was disregarded. Therefore, the
Digraph fragmentation submethod is equally insensitive
to all possible types of OCR character error.

The Digraph fragmentation submethod is also able to
use the data plane comparison embodiment disclosed
above, although in a slightly different conceptual for-
mat. In the previous embodiment, the processor plane
comprises a horizontal row of 32 processors, corre-

5,329,598

15

sponding to the characters in a fragment, and the 32
rows of the processor plane correspond to the 32 differ-
ent fragments. In the present embodiment, the 32 pro-
cessors in each row now correspond to the second char-
acter in each Digraph fragment, while the 32 horizontal
rows represent the first character of each Digraph frag-
ment, as shown in FIGS. 11A-11D. Inputting the cor-
rect character string “bannock” Digraph fragments into
the processor plane produces a first data plane as shown
in FIG. 11A. The result from inputting the uncorrected
character string “bayock” Digraph fragments into the
processor plane produces a second data plane shown in
FIG. 11B. Again, as set forth in the first preferred em-
bodiment for determining the total values of the com-
parison, the contents of each processor in the first data
plane can be “XOR”ed with the contents of the corre-
sponding processor in the second data plane. The result
of this is shown in FIG. 11C. When the contents of all
the one bit processors in FIG. 11C are added, the result
is the total “missed” value for this comparison.

Likewise, the third preferred embodiment for the
determining step can be implemented by logically
“AND”ing the data from a processor in the first data
plane with the corresponding data from a processor in
the second data plane to produce the data plane shown
in FIG. 11D. Again, the data in the data plane shown in
FIG. 11D is added to produce a total “matched” value,
and the proper correct character string determined.

Finally, in accordance with the three preferred em-
bodiments of the comparison step, the “matched” value
produced by the “AND” operation can be subtracted
from the “missed” value produced by the “XOR” oper-
ation to produce a combined value, or either one can be
used by itself. This combined value can then be used to
determine the proper correct character string.

Appendix III shows a trial run using the Digraph
embodiment alone. Looking at column 4, the Digraph
embodiment is able to positively identify 47 of the 51
uncorrected character strings. The results in Appendix
III were generated using the second preferred embodi-
ment of the comparing and determining step, and used a
threshold of negative four, meaning that the “misses”
value minus the “matches” value is less than four. In
addition, of the four uncorrected character strings
which were above the threshold, two were also cor-
rectly identified. Of the 47 positively identified uncor-
rected character strings, two errors were made. Again,
as with Appendix II, the error rate on a longer list of
uncorrected character strings having more realistic
errors would be much lower.

Comparing the resuits of lines 18, 21 and 23 of Ap-
pendices I and 111, the Digraph embodiment was able to
positively identify the uncorrected character string
“dvlta” as the correct character string “dakota” while
the SCMYV et al. embodiment was not able to positively
identify this uncorrected character string. Conversely,
in line 21, the Digraph embodiment was not able to
correctly or positively identify the uncorrected charac-
ter string “flatcp” for the correct string “flathead”,
while the SCMYV et al. embodiment was able to cor-
rectly and positively identify this uncorrected character
string. In line 23, both the Digraph embodiment and the
SCMV et al. embodiment incorrectly identify the un-
corrected character string “grgyqcre”, but they do not
identify the same correct character string. From this
comparison, it is easy to see that the Digraph embodi-
ment and SCMV et al. embodiment provide comple-
mentary results that can be used to increase the number

20

25

30

35

40

45

50

55

65

16

of positively identified uncorrected character strings, or
to decrease the errors in the number of positively identi-
fied uncorrected character strings, or both.

Also, the Digraph fragmentation submethod can also
be combined with the alpha fragmentation submethod
to permit pre-screening of the possible correct charac-
ter strings by the alpha fragmentation method to pro-
duce the most probable correct character strings. Then,
only these most probable correct character strings are
analyzed using the Digraph fragmentation submethod.
Finally, the correct character strings selected by the
Digraph fragmentation submethod can be used as prese-
lected input to the SCMV, SVMC, MCMV and
MVMC submethods as the ALPHA method was for the

other submethods.
Appendix 1

0 ALEUT ALHYT ¢ 0

1 APACHE CKPACHE 0 1
2 ARAPAHOE ARAPAIOE ¢ 2

3 ARIKARA YRIKARA O 3

4 ASSINIBOINE ANNIKINE O 48

5 BANNOCK BAYOCK 0 5

6 BELLACOOLA BVWXOOLA 0 6

7 BLACKFOOT TYLACIFOOT 0 7

8 CHEROKEE CHEROKEV 0 8

9 CHEYENNE CHECENRKY 0 9
10 CHICKASAW CDICCASAVA 0 10
11 CHINOOK CHINOKW 0 11
12 CHIPPEWA CHIPPEWA 0 12
13 CHOCTAW CHOCTYW 0 13
14 COMANCHE COMANCHE 0 14
15 CREE WTREE 0 15
16 CREEK CREEK 0 16
17 CROW CROW 0O 17
18 DAKOTA DVLTA 0 18
19 DELAWARE DELAWARE 0 19
20 ESKIMO ESKIMJ 0 20
21 FLATHEAD FLATCP 1 1
22 FOX FOX 0 22
23 GROSVENTRE GRGYQCRE 0 9
24 HAIDA HAIIA © 24
25 HIDATSA HIDPSA 0 25
26 HOPI HOPI 0 26
27 HUPA HDPA 0 27
28 IOWAIROQUOIS IORAIROQUOIS 0 28
29 MOHAWK MOHAWK © 29
30 ONEIDA INSDGA 1 30
31 ONODAGA ONODAGG 0 31
32 CAYUGA CAYUGA O 32
33 SENECA SENECN 0 33
34 KAROK KARGK © 34
35 KICKAPOO KICKEDPOO © 35
36 KIOWA KXCOWA © 36
37 KUTENAI KUWMENAI 0 37
38 KWAKIUTL KWHKIUHTL O 38
39 MAIDU MAIDU 0 39
40 MANDAN MANZAP 0O 40
41 MENOMINI MQNHMINI 0 41
42 MISSION MISSION 0 42
43 MOHICAN MPMCCN 0 43
44 NAVAHO NAZHO 0O 44
45 NEZPERCE NYQPERCE 0 45
46 NOOTKA NOCTKA O 46
47 OJIBWAY OJIBWAY 0 47
43 OKINAGAN OKINBICSAG 0 48
49 OMAHA OMAHA O 49
50 SEMINOLE SEINOLE 0 50

Appendix 11

0 ALEUT ALHYT 1 0

1 APACHE CKPACHE 1 1

2 ARAPAHOE ARAPAIOE 1 2

3 ARIKARA YRIKARA 1 3

4 ASSINIBOINE ANNIKINE 1 37

5,329,598

17 18

-continued -continued

Appendix I1 Appendix III
5 BANNOCK BAYOCK 1 5 29 MOHAWK MOHAWK 0 29
6 BELLACOOLA BVWXOOLA 1 6 5 30 ONEIDA INSDGA | 32
7 BLACKFOOT TYLACIFOOT 1 7 31 ONODAGA ONODAGG © 31
8 CHEROKEE CHEROKEV 1 8 32 CAYUGA CAYUGA © 32
9 CHEYENNE CHECENRKY 1 9 33 SENECA SENECN 0 33

10 CHICKASAW CDICCASAVA 1 10 34 KAROK KARGK 0 34

11 CHINOOK CHINOKW 1 i1 35 KICKAPOO KICKEDPOO 0 35

12 CHIPPEWA CHIPPEWA 0 = 12 36 KIOWA KXCOWA 0 36

13 CHOCTAW CHocTYwW 1 13 10 37 KUTENAI KUWMENAI 0 37

14 COMANCHE COMANCHE 0 14 38 KWAKIUTL KWHKIUHTL 0 38

15 CREE WTREE 1 15 39 MAIDU MAIDU 0 39

16 CREEK CREEK 0 16 40 MANDAN MANZAP 0 40

17 CROW CROW 0 17 41 MENOMINI MQNHMINI 0O 41

18 DAKOTA DVLTA 1 0 42 MISSION MISSION ¢ 42

19 DELAWARE DELAWARE 0 19 15 43 MOHICAN MPMCCN 0 40

20 ESKIMO ESKIMJ 1 20 44 NAVAHO NAZHO 0 4

21 FLATHEAD FLATCP 1 1 45 NEZPERCE NYQPERCE © 45

22 FOX FOX 0 22 46 NOOTKA NOCTKA O 46

23 GROSVENTRE GRGYQCRE 1 9 47 OJIBWAY OJIBWAY 0 47

24 HAIDA HAIIA 1 2 48 OKINAGAN OKINBICSAG © 48

25 HIDATSA HIDPSA 1 24 20 49 OMAHA OMAHA 0 49

26 HOPI HOPI 0 26 50 SEMINOLE SEINOLE © 50

27 HUPA HDPA 1 27

28 IOWAIROQUOIS IORAIROQUOIS 1 28 . . .

29 MOHAWK MOHAWK 0 29 What is claimed is:

30 ONEIDA INSDGA 1 32 1. A method of analyzing an uncorrected character

31 ONODAGA ONODAGG 0 31 25 string generated by an input device, comprising the

32 CAYUGA CAYUGA 0 32 steps of:

33 SENECA SENECN 1 33 A .

34 KAROK KARGK 1 34 dividing the uncorrected character string into at least

35 KICKAPOO KICKEDPOO 1 35 one set of uncorrected character string fragments

36 KIOWA KXCOWA 1 29 by use of at least one predetermined submethod,

g; ﬁg&%g}ﬂ &%ﬁ?ﬁ % i; 30 successively selecting at least one correct character

39 MAIDU MAIDU 0 39 string from a predetermined list of correct charac-

40 MANDAN MANZAP 1 40 ter strings as at least one current correct character

41 MENOMINI MQNHMINI 1 41 string,

g ﬁgﬁi(c)in m};%gg ‘1) :(2) comparing, for each current correct character string

44 NAVAHO NAZHO 1 44 3 and each set of uncorrected character string frag-

45 NEZPERCE NYQPERCE 1 45 ments, a predetermmed set of correct character

46 NOOTKA NOCTKA 1 46 string fragments to the corresponding set of uncor-

47 OJIBWAY OJIBWAY 0 47 rected character string fragments to generate an

48 OKINAGAN OKINBICSAG 1 48 error value for each predetermined set of correct

49 OMAHA OMAHA 0 49 . ;

50 SEMINOLE SEINOLE 1 50 40 character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

Appendix 111 lower error value from the generated error values
5 ALEUT ALHYT 0 5 45 asa correspondm_g tc')ta] value for the current cor-
1 APACHE CKPACHE 0 1 rect character string; '
2 ARAPAHOE ARAPAIOE 0 2 storing at least one current correct character string
3 ARIKARA YRIKARA 0 3 and the corresponding total value to a storage
4 ASSINIBOINE ANNIKINE 0 48 means; and
2 gg{l{j fggoL A ng;gggi g 2 50 transferring the contents pf the storage .device to an
7 BLACKFOOT TYLACIFOOT 0 7 appropriate output device upon reaching an end of
8 CHEROKEE CHEROKEV 0 8 the list of correct character strings;

](9) ggfgfig’fw c(g?égEgisZ g 13 wherein characters in the correct and uncorrected

11 CHINOOK CH&OKW 0 1 character stririg fragments are placed in a predeter-

12 CHIPPEWA CHIPPEWA 0 12 55 mined order without regard to ordering of the

13 CHOCTAW CHOCTYW 0 13 characters in the correct and uncorrected charac-

1‘; ggg‘é\NCHE COMQ‘_‘:_E%E (1’ 14 ter strings, respectively.

16 CREEK CREEK 0 12 2. The method of claim 1, wherein the step of trans-

17 CROW CROW 0 17 ferring at least one correct string further comprises the

18 DAKOTA DVLTA 1 18 60 steps of:

;g Ensé-&“o’ARE DEL*;‘SVX?I‘;E 0 ;g selecting one correct character string from the prede-

21 FLATHEAD FLATCP g 2 termined list of correct character strings which has

22 FOX FOX 0 2 . aunique and a lowest total value; and

23 GROSVENTRE GRGYQCRE 1 19 transferring the selected correct character string to

g‘; :?1;2?5 HI*I*)A“A 0 i‘s‘ 65 the output device for the uncorrected character

% HOPI A H]:f‘}f} 8 % string when the total value of the selected correct

27 HUPA HDPA 0 27 character string is below a predetermined thresh-

28 IOWAIROQUOIS IORAIROQUOIS 0 28 old value.

5,329,598

19

3. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and
transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein the
corrected and uncorrected character strings are
divided into no more than a predetermined number
character string fragments.
4. A method of analyzing an uncorrected character
string generated by.an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and

transferring the contents of the storage device to an

appropriate output device upon reaching an end of
the list of correct character strings, wherein dupli-
cate characters are added to a character string until
a specified number of characters comprise the
character string.

5. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:

10

30

40

50

65

20

dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current character string,

comparing, for each current correct character string
and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total values for the current
correct character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and
transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one
predetermined submethod comprises the steps of:

generating a first character string fragment by includ-
ing all the characters of the character string up to
but excluding a first consonant;

generating a next character string fragment by in-

cluding the consonant and all subsequent charac-
ters of the character string up to but excluding a
next consonant; and
repeating the next character string fragment generat-
ing step until the first of all the characters being
included in a character string fragment and a pre-
determined number of character string fragments
being generated occurs.
6. The method of claim 5, further comprising the step
of deleting all characters duplicated within a single
character string fragment.
7. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and

5,329,598

21

transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one
predetermined submethod comprises the steps of:

generating a first character string fragment by includ-
ing all the characters of the character string up to
but excluding a first vowel;

generating a next character string fragment by in-

cluding the vowel and all subsequent characters up
to but excluding a next vowel; and
repeating the next character string fragment generat-
ing step until the first of all the characters being
included in a character string fragment and a pre-
determined number of character string fragments
being generated occurs.
8. The method of claim 7, further comprising the step
of deleting all characters duplicated within a single
character string fragment.
9. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error value
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage

means; and

transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one

predetermined submethod comprises the steps of:

generating a first character string fragment by includ-
ing all the characters of the string up to a first
vowel-consonant combination;
including the vowel in the current fragment;
generating a next character string fragment by in-
cluding the consonant in the next fragment and all
subsequent characters up to a next vowel-conso-
nant combination; and .

repeating the including and next character string
fragment generates steps until the first of all the
character string of the characters string being in-
cluded in a character string fragment and a prede-
termined number of character string fragments
being generated occurs.

10. The method of claim 9, further comprising the
step of deleting all characters duplicated within a single
character string fragment.

11. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:

10

15

20

45

50

65

22

dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string
and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined sep of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a
lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string
and the corresponding total value to a storage
means; and

transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one
predetermined submethod comprises the steps of:

generating a first character strings fragment by in-
cluding all the characters of the string up to a first
consonant-vowel combination;

including the consonant in the current fragment;

generating a next character string fragment by in-
cluding the vowel in the next fragment and all
subsequent characters up to a next consonant-
vowel combination; and

repeating the including and next character string
fragment generating steps until the first of all the
characters of the character string being included in
a character string fragment and a predetermined
number of character string fragments being gener-
ated occurs.

12. The method of claim 11, further comprising the

step of deleting all characters duplicated within a single
character string fragment.

13. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:

dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod,;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string
and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a
lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

5,329,598

23
storing at least one current correct character string
and the corresponding total value to a storage
means; and
transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one
predetermined submethod comprises the steps of:

generating a first digraph character by including a

first character and a next character of the character
string;

generating a next digraph character by including the

next character and a next plus one character of the
character string; and

repeating the next digraph character generating step

unti] all the characters of the character string are in
at least one digraph character.
14. The method of claim 13, further comprising the
step of enhancing, prior to generating the first digraph
character, character strings by appending a beginning
or end of word symbol to the beginning and end of the
character string.
15. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod,;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter string as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and
transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein one
predetermined submethod comprises the steps of:

of eliminating duplicate characters from the charac-
ter strings and;

reordering the characters of each of the character

strings in alphabetical order.
16. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character

10

20

25

30

35

45

50

55

60

65

24

string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod,;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corresponding total value to a storage
means; and

transferring the contents of the storage device to an

appropriate output device upon reaching an end of
the list of correct character strings; and further
comprising the steps of:
selecting another predetermined submethod to prese-
lect most probable correct character strings;

performing the comparison and selection steps on the
list of predetermined correct character strings,
using the selected submethod to determine the
most probable correct character strings;

storing the most probable correct character strings as

a new list of predetermined correct character
strings; and

using the new list in place of the original list for re-

maining submethods.
17. A method of analyzing an uncorrected character
string generated by an input device, comprising the
steps of:
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod,

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

comparing, for each current correct character string

and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a

lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string

and the corrésponding total value to a storage
means; and
transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings, wherein the
step of comparing the sets of correct and uncorrect
character string fragments comprises the steps of:

loading all of the correct character string fragments
into a first input data plane of a processor plane of
1-bit paraliel processors;

loading all of the uncorrected character string frag-

ments into a second input data plane of the proces-
sor plane;

outputting results from at least one logical combina-

tion of corresponding locations on the first and

5,329,598

25

second input data planes to an output data plane of
the processor plane; and

parallely summing the results of the output data plane

for each logical combination.

18. The method of claim 17, wherein the at least one
logical operation is at least one of a logical XOR opera-
tion and a logical AND operation.

19. A method of analyzing an uncorrected character
string, comprising the steps of:

scanning a hand-completed form with a scanner;

outputting signals from the scanner to an optical

character recognition system;

converting the scanner signals to an uncorrected

string of character data;
storing the uncorrected character string in a memory;
dividing the uncorrected character string into at least
one set of uncorrected character string fragments
by use of at least one predetermined submethod;

successively selecting at least one correct character
string from a predetermined list of correct charac-
ter strings as at least one current correct character
string,

10

15

20

25

30

35

45

50

55

65

26

comparing, for each current correct character string
and each set of uncorrected character string frag-
ments, a predetermined set of correct character
string fragments to the corresponding set of uncor-
rected character string fragments to generate an
error value for each predetermined set of correct
character string fragments, wherein each predeter-
mined set of correct character string fragments is
generated by one predetermined submethod;

selecting, for each current correct character string, a
lowest error value from the generated error values
as a corresponding total value for the current cor-
rect character string;

storing at least one current correct character string
and the corresponding total value to a storage
means;

transferring the contents of the storage device to an
appropriate output device upon reaching an end of
the list of correct character strings.

20. The method of claim 1, wherein the predeter-

mined order is alphabetical order.

21. The method of claim 3, wherein the predeter-

mined number of character string fragments is 4.

* % %X % x

